首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   8篇
测绘学   2篇
大气科学   5篇
地球物理   23篇
地质学   70篇
海洋学   6篇
天文学   14篇
综合类   15篇
自然地理   10篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1973年   1篇
排序方式: 共有145条查询结果,搜索用时 109 毫秒
71.
The present study examines the geoarchaeological history of an oasis in Kharga Depression in central Egypt. El‐Deir is renowned for its Ptolemaic temple and Roman fortress on the road from former Hibis (Kharga) to the Nile Valley. During the survey, spring mounds and irrigation soils belonging to an ancient agricultural zone were discovered, and further documented by ceramics found on the site. Our methodology combines the geomorphological interpretation of landforms (especially yardangs) with ceramics and 14C‐dated charcoal to distinguish and date former agricultural areas in El‐Deir. The results show that the oasis experienced several phases of soil accretion and destruction through time. Playa sediments were deposited in the humid early Holocene and severely eroded by deflation before the onset of irrigated agriculture between Pharaonic and Persian times. Very fast vertical soil accretion occurred in the Ptolemaic period, but irrigation soils were later destroyed during the Roman period by a combination of wind deflation and flash floods (second to fourth century A.D.), suggesting a period of climate instability. The case of El‐Deir invites reevaluation of constructive agencies for the development of irrigated land and destructive agencies as limiting factors for the sustainability of agricultural practices in late antiquity.  相似文献   
72.
73.
Sediment yield is the amount of erosional debris from drainage basin deposited in reservoirs. The economic life of storage reservoir depends upon the estimation of the time it takes for the reservoir to be filled with the deposition of sediments. This research is based on assessing the sediment yield in Rawal Dam catchment by using Soil and Water Assessment Tool (SWAT) model. Digital Elevation Model (DEM), land use maps, soil maps, and weather data of the study watershed were used as input to SWAT model. Monthly sedimentation data of year 2010 and discharge data from 1998 to 2005 is being used for model calibration and validation, respectively. Whereas simulations are being generated from 1998 to 2011 for both sedimentation and discharge. Modified Universal Soil Loss Equation (MUSLE) was used for the estimation of sediment yield. The Nash and Sutcliffe coefficient of the model was found to be 0.79 which depicts its effectiveness. After the estimation of the sediment yield and discharge by using SWAT model, double mass curve was used to evaluate the sedimentation rate. The rate of sediment transport can be reduced by the construction of check dams. Various sites have also been proposed for check dams construction to prevent the sediments transported into the Rawal Catchment.  相似文献   
74.
With a capacity of 86 MCM, King Talal Reservoir is considered a major water supply in Jordan. It was built exclusively to irrigate the land in the Jordan Valley. Unexpectedly, the design capacity of the reservoir was confronted by the elevated sediment inflows during and after the construction of the Irbid–Amman Highway in 1987. Since then the annual sediment inflow measured at the mouth of the reservoir was higher than expected in a similar year. Notably, the over-wet season of 1991/2, as a result of six major landslides along the highway, registered the highest sediment inflow into the reservoir. In the present work the fractional contribution of these landslides to total sediment yield at the reservoir was evaluated. The evaluation was made by applying the well-known erosion model, AGNPS (Young et al., USDA Conservation Research Report 35, 1987). To calibrate the model, it was successively applied from 1980/1 to 1990/1 on the measured sediment data before the occurrence of landslides. With a slight tune-up of some of the King Talal watershed erosion variables, fairly good agreement was obtained in some years. However, the disagreement noticed in other years might be attributed to some conservation measures practised in the watershed. Because the serious landslides occurred in the wet season of 1991/2, the model was run for the two scenarios in this year: with and without landslides. The difference in results represents the contribution of landslides to sediment yield at the reservoir. It is concluded, based on these results, that landslides, if continued without control, will definitely jeopardize the design capacity of the reservoir.  相似文献   
75.
This paper provides for the first time an experimental study where the impact of sea‐level fluctuations and inland boundary head‐level variations on freshwater–saltwater interface toe motion and transition zone dynamics was quantitatively analysed under transient conditions. The experiments were conducted in a laboratory flow tank where various (inland and coastal) head changes were imposed to the system and the response of the key seawater intrusion parameters was analysed with high spatial and temporal resolution. Two homogeneous aquifer systems of different grain size were tested. The numerical code SEAWAT was used for the validation. The results show that in cases of sea‐level variations, the intruding wedge required up to twice longer time to reach a new steady‐state condition than the receding wedge, which thereby extend the theory of timescale asymmetry between saltwater intrusion and retreat processes in scenarios involving sea‐level fluctuations. The intruding and receding rates of the saltwater wedge were respectively similar in the scenario involving sea‐level and the freshwater‐level changes, despite change in transmissivity. The results show that, during the intrusion phase, the transition zone remains relatively insensitive, regardless of where the boundary head change occurs (i.e., freshwater drop or sea‐level rise) or its magnitude. By contrast, a substantial widening of the transition zone was observed during the receding phase, with almost similar amplitude in the scenario involving a rise of the freshwater level compared with that caused by a drop of the saltwater level, provided that an equivalent absolute head change magnitude was used. This transition zone widening (occurring during saltwater retreat) was greater and extended over longer period in the low hydraulic conductivity aquifer, for both freshwater‐level rise and sea‐level drop scenarios. The concentration maps revealed that the widening mechanism was also enhanced by the presence of some freshwater sliding and into the wedge during saltwater retreat, which was thereafter sucked upward towards the interface because of density difference effects.  相似文献   
76.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   
77.

This study was conducted to evaluate the effect of replacing soybean meal (SBM) by low protein floc meal (LPFM; 24% CP) in tilapia diets on growth performance, feed utilization and fish chemical composition. Three isonitrogenous and isocaloric diets were formulated; control diet (C; without LPFM), FM 25 (25% of SBM protein was substituted by LPFM) and FM 50 (50% of SBM protein was substituted by LPFM). Nine 55l circular plastic tanks were stocked by 12 fish to form three experimental groups. No differences in tilapia performance were observed between the control and the FM 25 diet. Chemical composition of fish did not differ significantly among treatments except for protein and selenium contents where the highest values were recorded in the control treatment. The highest mineral content was recorded in floc collected from the control tanks, while calcium content showed its highest value in floc collected from FM 50 effluent. These data indicate that replacing soybean meal with LPFM up to 25%, had no negative effect on growth performance and potentially may improve the system sustainability. Meanwhile, the adverse effect of more inclusion of LPFM in tilapia diet may be attributed to the higher content of ash. In other word, minerals seem to cause more energy utilization in fish fed floc meal since it is needed to maintain osmotic homeostasis.

  相似文献   
78.
Down-looking (DL) Global Positioning System (GPS) radio occultation can produce an estimate of the atmospheric refractivity profile. The main observations are the bending angle as a function of the impact parameter. DL provides both negative as well as positive elevation angle measurements. Abel inversion can be operated on a profile of partial bending angle found by subtracting the positive elevation measurement from the negative one with the same impact parameter. Abel inversion requires the spherical symmetrical assumption. Basically, partial bending calculation removes the ionospheric bending and hence it is possible to use a single frequency GPS receiver. The current paper introduces a simulation data for the case of a receiver on mountain top. The simulation uses model refractivity from MSISE-90 model as well as radiosonde data. Random noises are added to the bending angle profile before inversion. The result shows that it is possible to produce accurate vertical refractivity profile below the receiver altitude. The calculation of the water vapor profile is also made using temperature profile information from the MSISE-90 model as well as radiosonde. The errors in the retrieved vapor profile are always less than 0.1?mbar.  相似文献   
79.
Rapid urban expansion due to large scale land use/cover change, particularly in developing countries becomes a matter of concern since urbanization drives environmental change at multiple scales. Dhaka, the capital of Bangladesh, has been experienced break-neck urban growth in the last few decades that resulted many adverse impacts on the environment. This paper was an attempt to document spatio-temporal pattern of land use/cover changes, and to quantify the landscape structures in Dhaka Metropolitan of Bangladesh. Using multi-temporal remotely sensed data with GIS, dynamics of land use/cover changes was evaluated and a transition matrix was computed to understand the rate and pattern of land use/cover change. Derived land use statistics subsequently integrated with landscape metrics to determine the impact of land use change on landscape fragmentation. Significant changes in land use/cover were noticed in Dhaka over the study period, 1975–2005. Rapid urbanization was manifested by a large reduction of agricultural land since urban built-up area increased from 5,500?ha in 1975 to 20,549?ha in 2005. At the same time, cultivated land decreased from 12,040 to 6,236?ha in the same period. Likewise, wetland and vegetation cover reduced to about 6,027 and 2,812?ha, respectively. Consequently, sharp changes in landscape pattern and composition were observed. The landscape became highly fragmented as a result of rapid increase in the built-up areas. The analysis revealed that mean patch size decreased while the number of patches increased. Landscape diversity declined, urban dominance amplified, and the overall landscape mosaics became more continuous, homogenous and clumped. In order to devise sustainable land use planning and to determine future landscape changes for sound resource management strategies, the present study is expected to have significant implications in rapidly urbanizing cities of the world in delivering baseline information about long term land use change and its impact on landscape structure.  相似文献   
80.
An impact model of gravity designed to emulate Newton’s law of gravitation is applied to particles with relative motions at slow and relativistic speeds. Based on this model, a gravitational interaction mode is then conceived between photons and massive particles. This implies a deflection perpendicular to the propagation direction of a photon twice as large as expected from the mass-energy relation of photons—in accordance with observations and the General Theory of Relativity. The longitudinal interaction is compatible with the energy and momentum conservation principles applied to massless entities, and the results are consistent with the observed Shapiro delay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号